Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microbiol Spectr ; 10(3): e0226421, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1846340

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral RNA load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n = 29), asymptomatic (n = 31), or postsymptomatic (n = 15). Specimens were collected at one time point from each individual, between day 1 and 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by health care provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from postsymptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals. IMPORTANCE The dynamics of infection with SARS-CoV-2 have a significant impact on virus infectivity and in the diagnostic sensitivity of molecular and classic virus detection tests. In the present study we determined the diagnostic sensitivity of paired respiratory (nasopharyngeal and anterior nares swabs) and oral secretions (saliva and sublingual swab) and assessed infectious virus shedding patterns by symptomatic, asymptomatic, or postsymptomatic individuals. Understanding the diagnostic performance of these specimens and the patterns of infectious virus shedding in these bodily secretions provides critical information to control COVID-19, and may help to refine guidelines on isolation and quarantine of positive individuals and their close contacts identified through epidemiological investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling , Viral Load
2.
PLoS One ; 17(1): e0262868, 2022.
Article in English | MEDLINE | ID: covidwho-1643287

ABSTRACT

A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.


Subject(s)
Antibodies, Viral/chemistry , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/chemistry , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Male , Middle Aged , New York/epidemiology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2/classification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
3.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335232

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Administration, Intranasal , Administration, Intravenous , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Disease Models, Animal , Humans , Mouth/virology , Nose/virology , SARS-CoV-2/genetics , Swine , Trachea/virology , Virus Replication
4.
Arch Virol ; 166(9): 2551-2561, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309044

ABSTRACT

The aim of this study was to identify and validate a sensitive, high-throughput, and cost-effective SARS-CoV-2 real-time RT-PCR assay to be used as a surveillance and diagnostic tool for SARS-CoV-2 in a university surveillance program. We conducted a side-by-side clinical evaluation of a newly developed SARS-CoV-2 multiplex assay (EZ-SARS-CoV-2 Real-Time RT-PCR) with the commercial TaqPath COVID-19 Combo Kit, which has an Emergency Use Authorization from the FDA. The EZ-SARS-CoV-2 RT-PCR incorporates two assays targeting the SARS-CoV-2 N gene, an internal control targeting the human RNase P gene, and a PCR inhibition control in a single reaction. Nasopharyngeal (NP) and anterior nares (AN) swabs were tested as individuals and pools with both assays and in the ABI 7500 Fast and the QuantStudio 5 detection platforms. The analytical sensitivity of the EZ-SARS-CoV-2 RT-PCR assay was 250 copies/ml or approximately 1.75 genome copy equivalents per reaction. The clinical performance of the EZ-SARS-CoV-2 assay was evaluated using NP and AN samples tested in other laboratories. The diagnostic sensitivity of the assay ranged between 94 and 96% across the detection platforms, and the diagnostic specificity was 94.06%. The positive predictive value was 94%, and the negative predictive value ranged from 94 to 96%. Pooling five NP or AN specimens yielded 93% diagnostic sensitivity. The overall agreement between these SARS-CoV-2 RT-PCR assays was high, supported by a Cohen's kappa value of 0.93. The EZ-SARS-CoV-2 RT-PCR assay performance attributes of high sensitivity and specificity with AN sample matrix and pooled upper respiratory samples support its use in a high-throughput surveillance testing program.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/instrumentation , Epidemiological Monitoring , Gene Expression , Humans , Multiplex Polymerase Chain Reaction/economics , Multiplex Polymerase Chain Reaction/instrumentation , Nasal Cavity/virology , Nasopharynx/virology , Phosphoproteins/genetics , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling/methods , Viral Load
5.
Viruses ; 13(3)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1143614

ABSTRACT

The host range of SARS-CoV-2 and the susceptibility of animal species to the virus are topics of great interest to the international scientific community. The angiotensin I converting enzyme 2 (ACE2) protein is the major receptor for the virus, and sequence and structural analysis of the protein has been performed to determine its cross-species conservation. Based on these analyses, cattle have been implicated as a potential susceptible species to SARS-CoV-2 and have been reported to have increased ACE2 receptor distribution in the liver and kidney, and lower levels in the lungs. The goal of the current study was to determine the susceptibility of cattle to SARS-CoV-2 utilizing inoculation routes that facilitated exposure to tissues with increased ACE2 receptor distribution. For this, colostrum-deprived calves approximately 6 weeks of age were inoculated via the intratracheal or intravenous routes. Nasal and rectal swab samples, as well as blood and urine samples, were collected over the course of the study to evaluate viral shedding, viremia, and seroconversion. Pyrexia was used as the primary criteria for euthanasia and tissue samples were collected during necropsy. Importantly, SARS-CoV-2 RNA was detected in only two nasal swab samples collected on days 3 and 10 post-inoculation (pi) in two calves; one calf in the intratracheal group and the other calf in the intravenous group, respectively. Additionally, the calf in the intratracheal group that was positive on the nasal swab on day 3 pi also had a positive tracheobronchial lymph node on day 9 pi. Viral nucleic acid load on these samples, based on PCR cycle threshold values, were low and infectious virus was not recovered from the samples. These results suggest that there was no productive replication of SARS-CoV-2 in calves following intratracheal and intravenous inoculation.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Cattle , Disease Models, Animal , Host Specificity , Humans , Lymph Nodes/pathology , Lymph Nodes/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Virus Replication
6.
J Zoo Wildl Med ; 51(4): 733-744, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1041161

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged as the cause of a global pandemic in 2019-2020. In March 2020, New York City became the epicenter in the United States for the pandemic. On 27 March 2020, a Malayan tiger (Panthera tigris jacksoni) at the Bronx Zoo in New York City developed a cough and wheezing with subsequent inappetence. Over the next week, an additional Malayan tiger and two Amur tigers (Panthera tigris altaica) in the same building and three lions (Panthera leo krugeri) in a separate building also became ill. The index case was anesthetized for diagnostic workup. Physical examination and bloodwork results were unremarkable. Thoracic radiography and ultrasonography revealed a bronchial pattern with peribronchial cuffing and mild lung consolidation with alveolar-interstitial syndrome, respectively. SARS-CoV-2 RNA was identified by real-time, reverse transcriptase PCR (rRT-PCR) on oropharyngeal and nasal swabs and tracheal wash fluid. Cytologic examination of tracheal wash fluid revealed necrosis, and viral RNA was detected in necrotic cells by in situ hybridization, confirming virus-associated tissue damage. SARS-CoV-2 was isolated from the tracheal wash fluid of the index case, as well as the feces from one Amur tiger and one lion. Fecal viral RNA shedding was confirmed in all seven clinical cases and an asymptomatic Amur tiger. Respiratory signs abated within 1-5 days for most animals, although they persisted intermittently for 16 days in the index case. Fecal RNA shedding persisted for as long as 35 days beyond cessation of respiratory signs. This case series describes the clinical presentation, diagnostic evaluation, and management of tigers and lions infected with SARS-CoV-2 and describes the duration of viral RNA fecal shedding in these cases. This report documents the first known natural transmission of SARS-CoV-2 from humans to nondomestic felids.


Subject(s)
COVID-19/veterinary , Feces/virology , Lions/virology , SARS-CoV-2 , Tigers/virology , Animals , Animals, Zoo , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , New York City/epidemiology , Transcription Factors/genetics , Transcription Factors/isolation & purification
7.
mBio ; 11(5)2020 10 13.
Article in English | MEDLINE | ID: covidwho-868276

ABSTRACT

Despite numerous barriers to transmission, zoonoses are the major cause of emerging infectious diseases in humans. Among these, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and ebolaviruses have killed thousands; the human immunodeficiency virus (HIV) has killed millions. Zoonoses and human-to-animal cross-species transmission are driven by human actions and have important management, conservation, and public health implications. The current SARS-CoV-2 pandemic, which presumably originated from an animal reservoir, has killed more than half a million people around the world and cases continue to rise. In March 2020, New York City was a global epicenter for SARS-CoV-2 infections. During this time, four tigers and three lions at the Bronx Zoo, NY, developed mild, abnormal respiratory signs. We detected SARS-CoV-2 RNA in respiratory secretions and/or feces from all seven animals, live virus in three, and colocalized viral RNA with cellular damage in one. We produced nine whole SARS-CoV-2 genomes from the animals and keepers and identified different SARS-CoV-2 genotypes in the tigers and lions. Epidemiologic and genomic data indicated human-to-tiger transmission. These were the first confirmed cases of natural SARS-CoV-2 animal infections in the United States and the first in nondomestic species in the world. We highlight disease transmission at a nontraditional interface and provide information that contributes to understanding SARS-CoV-2 transmission across species.IMPORTANCE The human-animal-environment interface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important aspect of the coronavirus disease 2019 (COVID-19) pandemic that requires robust One Health-based investigations. Despite this, few reports describe natural infections in animals or directly link them to human infections using genomic data. In the present study, we describe the first cases of natural SARS-CoV-2 infection in tigers and lions in the United States and provide epidemiological and genetic evidence for human-to-animal transmission of the virus. Our data show that tigers and lions were infected with different genotypes of SARS-CoV-2, indicating two independent transmission events to the animals. Importantly, infected animals shed infectious virus in respiratory secretions and feces. A better understanding of the susceptibility of animal species to SARS-CoV-2 may help to elucidate transmission mechanisms and identify potential reservoirs and sources of infection that are important in both animal and human health.


Subject(s)
Animals, Zoo/virology , Betacoronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Pandemics/veterinary , Panthera/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Genome, Viral/genetics , Haplotypes , Humans , New York City/epidemiology , One Health , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL